时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。那么我们该如何写一篇较为完美的计划呢?下面是小编带来的优秀计划范文,希望大家能够喜欢!
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组 研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求 培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
本学期担任高一12、13两班的数学教学工作,两班学生共有100人,初中的基础参差不齐,但两个班的学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、三角函数、平面向量有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过三角函数的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念,了解空集和全集的意义。了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、三角函数
4、平面向量
1、集合、子集、补集、交集、并集,一元二次不等式的解法
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、三角函数的图像和性质
4、平面向量的基础知识和基本的运算。
1、函数、指数函数、对数函数
2、三角函数的概念、图像和性质
1、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强。但是普遍学习习惯不好,数学基础较差,学习兴趣不浓。所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础。
全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。
任务:基础模块第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函数(11月份
第四章指数函数与对数函数(12月份-1月份
措施:
1.夯实三基
知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:
a.教学面向全体学生。
b.重视概念的归纳、规律的总结、技能的训练。
c.重视知识的产生、发展过程。
d.加强知识过关检测,做好查漏补缺工作。
2.优化课堂教学结构
a.精心设计课堂教学:
b.课堂练习典型化;
c.教学语言精练化
d.板书规范化。
3.加强学习方法指导:
a.指导学生看书,培养学生主动学习的习惯。
b.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。
4.加强学风建设与学习习惯的培养。
适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。
四、各章节授课具体时间安排:
基础模块第一章集合(约12课时)
1、理解集合、元素及其关系,掌握集合的表示法。
2、掌握集合之间的关系(子集、真子集、相等。
3、理解集合的运算(交、并、补。)
4、了解充要条件。
基础模块第二章不等式(约12课时)
1、理解不等式的基本性质。
2、掌握区间的概念。高一上数学教学计划高一上数学教学计划。
3、掌握一元二次不等式的解法。
基础模块)第三章函数(约20课时)
1、理解函数的概念和函数的三种表示法。
2、理解函数的单调性与奇偶性。
3、能运用函数的知识解决有关实际问题。
基础模块第四章指数函数与对数函数(约20课时)
1、理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。
2、了解幂函数的概念及其简单性质。
3、理解指数函数的概念、图像及性质。
4、理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。)
5、理解对数函数的概念、图像及性质。
6、能运用指数函数与对数函数的知识解决有关实际问题。
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
周次 课、章、节 教学内容 备注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 数列的概念与简单表示法,等差数列
4 2.3 等差数列的前n项和
5 2.4,2.5 等比数列及前n项和
6 2.5 考试
7 3.1,3.2 不等关系与不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(组)与简单线性规划问题,基本不等式
9 考试,复习
10 期中考试
11 1.1,1.2 空间几何体的结构,三视图,直观图
12 1.3 空间几何体的表面积与体积
13 2.1,2.2 空间点、直线、平面的位置关系,直线、平面平行的判定及其性质
14 2.3 直线、平面的判定及其性质
15 3.1,3.2 直线的倾斜角与斜率,直线方程
16 3.3 直线的交点坐标与距离公式
17 4.1,4.2 圆的`方程,直线、圆的位置关系
18 4.3 空间直角坐标系
19 复习
20 考试
解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。
初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。
学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。
①知识与技能
熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集
②过程与方法
经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习
③情感、态度及价值观
在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机
一元二次不等式的解法
解法的探索及发现,关键在于“识图能力”
今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:
首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。
其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。
在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。
以题组形式设计习题
①2x+3>7
②不等式组
③ax>b
采用课本上的实例,有关网络收费问题
(1)在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。
由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。
(2)采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。
之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。
反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。
可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。
课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。
知识,思想、方法及感悟等
①作业设计:分成a、b两层,难度不一,让学生自主选择,均来源于课本上的a组或b组
②课外思考题:
1、比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同
2、已知不等式mx^2-(m-2)x+m>0的解集为r,求m的取值范围
变式一:戓将r改为空集,此时结论如何
变式二:仿上,自己改编条件,并解之。
反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。
本学期,我将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,围绕“生本教育”的教学理念,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的数学教研工作新体系。继续推进“生本教育”改革的进程,提高数学教学质量,努力让自己成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师。
1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。
2、在数学学科教研教改中注重素质教育,让自己成为一位思想素质、业务素质过硬的数学教师。
3、狠抓生本教育,加强数学课堂改革力度,积极参加各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。
4、积极参加集体备课和业务学习活动,共同提高教育教学水平。听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。
1、把握教材关:
认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。
2、规范日常工作:
严格规范数学教学常规。要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。
3、教师角色的变化:
要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在“讲”的基础上“扶”着学生、“牵”着学生去掌握知识,而是要将知识“放”给学生,放心、放手地让学生自主学习。
总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。
分析近几年高考数学试卷,考察方向越来越清晰,即本着课改方向:能力立意,重点考查学生数学本质思想的理解及其思维能力和创新意识。从题目上看比较贴近中学教学实际,在坚持对五个能力(空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力)、两个意识(应用意识、创新意识)考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色。考查更加科学。本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。正因为如此,我们组对本学期计划如下:
一、以“为学生的终身幸福奠基的理念”为指引,切实落实“6+1”教学模式及精神实质,在学校“高效课堂,精细管理,激情教育”三箭齐发的大背景下,在教学处、年级组、教研组的监督与指导下,严格遵守教学计划,落实教学常规,全体组员做到以下几点:
(1)、全组成员精诚团结,互相学习,取长补短,一定要使我们高一数学备课组组成为一个优秀集体。
(2)、规定集体备课的时间,分工协作,加强研讨,统一教学进度,统一课件,又要根据本班的学情进行复备。
(3)、积极参与备课组的教学资源的建设,鼓励每位教师就自己在教学中的经验、体会或教训,及时总结。
2、四个重视,即重视课堂管理,重视过程管理,重视质量管理,重视合力管理。在组内形成一股正气,形成浓厚的“赶学比帮超”的学风,研究6+1,研究高考,为自己的成才铺路,为学校的逆势崛起添力。
二、教学内容及教材分析
1、教材版本
人教出版设a版数学必修1、数学必修4。
2、教材内容的整体分析:
主要内容包括:必修1集合与函数概念,基本初等函数,函数的应用三章内容;必修4三角函数,平面向量,三角恒等变换分为三章。
人教a版教材体现基础性、时代性、典型性、和可接受性等,具有的如下特点:
(1)亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习兴趣。
(2)问题性:一恰时恰当的问题引导教学活动,培养问题意识,孕育创新精神。
3、重点、难点:集合的概念及性质,函数的概念及性质,三角函数的概念及性质,平面向量。
三、教学策略及主要措施
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)针对清北班、重点班和普通班不同的班级进行分类教学。对清北班、重点班学生严格要求,注重数学思想方法、计算、速度、规范等各方面的培养;普通班学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性及学习习惯的养成。
三类班级还都应做到:课前评价和弥补的策略;注意思维过程;注意数学知识间的比较和转化过程,比较可使新旧知识建立联系,那么转化则可把新问题化归为旧问题(利用比较),然后利用已有的知识进行突破。
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的“属于”关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
1.1.1集合的含义与表示约1课时9月1日
1.1.2集合间的基本关系约1课时
9月4日
1.1.3集合的基本运算约2课时
9月12日小结与复习约1课时
1.2.1函数的概念约2课时
1.2.2函数的表示法约2课时
9月13日
1.3.1单调性与最大(小)值约2课时
1.3.2奇偶性约1课时
9月25日小结与复习约2课时
第二章基本初等函数(i)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
2.1.1引言、指数与指数幂的运算约3课时9月27日—30日
2.1.2指数函数及其性质约3课时10月8日—10日
2.2.1对数与对数运算约3课时10月11日—14日
2.2.2对数函数及其性质约3课时10月15日—18日
2.3幂函数约1课时
10月19日—24日
小结约2课时
第三章函数的应用
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1方程的根与函数的零点约1课时10月25日
3.1.2用二分法求方程的近似解约2课时10月26日—27日
3.2.1几类不同增长的函数模型约2课时
10月30日
3.2.2函数模型的应用实例约2课时
11月3日
小结约1课时
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
1、《普通高中课程标准实验教科书语文》必修3人民教育出版社
2、《普通高中课程标准实验教科书语文》必修4人民教育出版社
经过高一上学期的磨合,学生基本适应高中阶段的语文学习多数同学摆脱了初中时段机械地、死记硬背地学习语文的思维定势,体上能感觉到高中语文学习与以往有所不同,懂得了主动学习、主动选择和确定学习内容,最起码有了这种认识、这种欲望了。
在上学期期中考试中,许多学生摸不着头脑,从不知考什么中映出不知学什么,很迷茫。到期末考试时,多数同学知道高中语文学什么,以及怎么学了。当然,迷惘的同学也还有不少。这需要我们进一步激发和引导他们学习语文。
本学期学习普通高中课程标准实验教科书语文必修3和必修4两本书的内容。
必修3的“阅读鉴赏”部分所选的课文既有古代诗歌散文名篇,也有中外小说和科普科幻作品。四个单元分别是:人物与环境小说一,感受与共鸣唐宋诗,质疑解难古代议论散文,启迪与想象科普科幻作品。
“表达交流”中的写作部分主要训练一般议论文的写作,写作专题分别是:多思善想——学习选取立论的角度学会宽容——学习选择和使用论据善待生命——学习论证爱的奉献——学习议论中的记叙。口语交际专题为议论。
“梳理探究”设计的专题为:交际中的语言运用文字作品的个性化解读语文学习的自我评价。
“名著导读”介绍《红楼梦》和《高老头》。
必修4的“阅读鉴赏”部分所选的课文,有中外戏剧,宋元词曲,古代人物传记及社会科学论文。四个单元分别是:性格与中外戏剧,情思与意境宋元词曲,理清思路社会科学论文、随笔,知人论世古代人物传记。
“表达交际”中的写作部分主要训练议论文的写作,写作专题分别是:解读时间——学习横向展开议论发现幸福——学习纵向展开议论确立自信——学习驳善于思辨——学习辩证分析。口语交际专题为辩论。
“树立探究”设计的专题为:逻辑和语文学习,走近文学师、影视文化。
“名著导读”介绍莎士比亚戏剧和朱光潜的《谈美》。
拟在期中考试前完成必修3内容的学习,其中安排3次写作训练,2次月考或单元测试期中考试后完成必修4内容的学习,其中安排3次写作训练,1——2次月考或单元测试。
教学中要求做到:
1、依据新课标,结合学生的实际情况,采用灵活多样的教学模式,力求获得的教学效果。
2、认真钻研、领会新教材和新纲,提高课堂效益,向45分钟要质量。
3、本学期要完成必修3和必修4两部书的教学任务,时间紧,任务重,在完成教学任务的同时,还要强化语文基础知识的训练与提高。
4、本学期在写作上,着重培养学生写作议论文的能力。先了解议论文文本的相关知识,提高学生议论说理的兴趣和能力,训练学生的理性思维。
1、做好学情分析,面对高一下学期文理分科的现状,认识并了解新的学生,尽快熟悉学生的情况,有针对性地做到因材施教。
2、继续培养学生学习语文的兴趣,在平时的教学中,围绕学法设计教法,突出学生的主体地位。
3、讲究提问设计,板书设计,助学生进行知识归类、梳理。
4、利用课外时间给学生解疑答难,加强辅导,补学补差。
5、强化基础知识的教学,不断提高学生的语文素养。
6、在集体备课和教学中,以培养阅读能力为中心,在作文备课和训练中做到系列性、科学性、实效性。
1、充分认识到教科研工作在实施语文教学、提高学生语文素养的主要性。
2、认真学习、钻研新课程理论,切实转变教育教学理念,用科学的教育理念来指导语文教学。
3、坚持集体备课制度,集思广益,群策群力,用群体智慧和力量,提高整个高一年级组各位语文同仁的语文教学水平和能力。
4、充分利用现代化教学手段,发挥笔记本电脑在备课、教学、辅导等方面的积极作用。
5、课外认真学习有关语文教学的杂志,如《中学语文教学参考》、《语文学习》等,广泛吸收,不断充电,以期高屋建瓴地实施教学。
总之,不能做经验型语文教师,而要做科研型语文教师。
本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
知识与技能:
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系。
过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解截距与距离的区别。
情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
重点:直线的点斜式方程和斜截式方程。
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
1、教学方法的选择:启发、引导、讨论。
创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的。探究性学习活动。
2、通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:
①让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②分组讨论。
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:
1、亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、科学性与思想性:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、时代性与应用性:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识。
1、选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯。
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长。面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、重视数学应用意识及应用能力的培养。
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展和社会进步的需要。具体目标如下:
1.突出数学基础知识、基本技能、基本思想方法的培养
对数学基础知识和基本技能的培养,要贴近教学实际,既注意全面,又突出重点,注重知识内在联系以及中学数学中所蕴涵的数学思想方法的培养。
2.重视数学基本能力的培养
数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力。根据高一上学期的内容,侧重以下几个方面:
(1)运算求解能力是思维能力和运算技能的结合,主要包括数的计算、估算和近似计算,式子的组合变形与分解变形,以及能够针对问题探究运算方向、选择运算公式、确定运算程序等。
(2)抽象概括能力的培养要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或做出新的判断。
(3)推理论证能力的培养要求是:能够根据已知的事实和已经获得的正确的数学命题,运用演绎推理,论证某一数学命题的真假性。
(4)数据处理能力是指会收集、整理、分析数据,能够从大量数据中提取对研究问题有用的信息并做出判断,以解决给定的实际问题。
3.注重数学的应用意识和创新意识的培养
培养数学的应用意识,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决。培养学生的创新意识,鼓励学生创造性地解决问题。
4.提高学生学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。逐步认识数学的科学价值、应用价值和文化价值,崇尚数学的理性精神,体会数学的美学意义,形成批判性的思维习惯,从而进一步树立辩证唯物主义和历史唯物主义世界观。
高一上使用的是人教版《必修1》和《必修4》,这套教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现了基础性、时代性、典型性和可接受性等,具有如下特点:
1. 亲和力:以生动活泼的呈现方式,激发学习兴趣和美感,每章配有优美的章头图和诗一般的引言和富有哲理的数学家名言。
2. 问题性:每节围绕问题展开,设置问题情景,培养问题意识,以问题为切入点,形成问题链,来组织课堂教学
3. 思想性和应用性:通过不同数学内容的联系和启发,强调类比、推广、化归和特殊化等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培养理性精神;取材具有时代感、现实感,加强数学活动,发展应用意识。
4. 可操作性:教材编写体例就是以一堂课的全过程展开,易于学生自学、教师编写教案,大致一节内容占三页。
基本状况:本年级共14个行政班级,其中2个实验班,12个普通班。学生数共840人,由于初高中分别进行了课改,高中教材与初中教材衔接度远远不够,需在新授的同时适时补充一些内容,因此时间上略紧。同时,因其底子薄弱,教学时必须注重基础,夯实每个知识点。
1.加强自我学习,特别是两个纲领性文件——《普通高中数学课程标准》,《普通高中数学考试大纲》,准确把握教学要求,提高教学效率,不做无用功;
2.加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;平行班级统一进度,统一要求,统一作业,统一考试;
3.认真贯彻教学六认真的要求,精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;
4.加强衔接教学,适量打破模块式教学,使学生得到和谐的发展。
五、 教学进度
我们要培养学生在数学课程教学的基础上,提高自身的数学素养,满足个人发展与社会进步的要求。主要目标如下:
1、掌握主要的数学基础知识和基本技能,理解基本的数学概念和数学的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理和数形结合的思想等基本能力。
3、提高分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
1、激发学生的学习兴趣和信心,引发学生的学习热情。
2、用类比,推广,特殊化,化归和数形结合的思想等思想方法的运用,培养学生思考问题的方式,提高数学思维能力,培育学生的探究精神。
3、以具有时代性和现实感的素材创设教学情境,加强数学活动,发展学生的应用意识。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
4、组织学生思考和探索,改进学生的学习方式。是学生养成有逻辑思维的习惯。
我现在所教的两个班的学生的学习基础不好,自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是学生的计算能力太差,学生不喜欢去算题,嫌麻烦,特别是遇到复杂点的计算题,学生就怕。因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。在教学时要注重基础知识,争取每一堂课落实一些知识点,掌握主要的知识点。
1、激发学生的学习兴趣。由数学活动、故事等吸引学生的兴趣,树立学生的学习信心,提高学生学习的兴趣。
2、注意从实例出发,注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、重视数学应用意识及应用能力的培养。
工作时间:8:00-18:00
电子邮件
675289112@qq.com