教学反思是老师对教育内容思考的一种书面表达,在写教学反思老师一定都能吸取不少的教学能力,从而得到进步,下面是小编为您分享的分式方程的教学反思5篇,感谢您的参阅。
本节课分式方程的解法部分属于重点,难点为利用分式方程解实际问题。分式方程的解法是解决大多数数学问题的基础公具,应让学生们从思想上认识到它的重要性,解实际问题需正确找到等量关系,构建数学模型,把实际问题转化为数学计算问题,本节课学生对这条教学主线,理解较为清晰。
本节课我采用了启发讲授、合作探究、讲练相结合的.教学方式。在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”新课表理念。使学生充分地动口、动脑,参与教学全过程。在教学过程中,为了达到学习目标,强化重点内容并突破学习中的难点,在课堂教学过程中,根据教学目标和学生的具体情况,紧密联系实例,精心设计问题情境,使所有学生既能参与,又有探索的余地,全体学生在获得必要发展的前提下,不同的学生获得不同的体验。达到了课堂教学的有效性。在学法指导上,本着“授之以鱼,不如授之以渔”的原则,围绕本节课所学知识,激发学生积极思考,教会学生分析问题的方法,使学生既能在探索中获取知识,又能不断丰富数学活动的经验,学会探索,提高分析问题、解决问题的能力。
本节课体现了本人,努力培养具有较高数学素养的一代新人的教育观点,达到了预期的教学效果。
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
我认为比较成功的
1、把思考留给学生,课堂教学试一试这个环节中,我把更多的思维空间留给学生。问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。
2、积极正确的引导,点拨。保证学生掌握正确知识,和清晰的解题思路。由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。
3、及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。
虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。“信心是成功的一半”,“在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的.、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。
分式是八年级数学的第一章,经历了三周多的学习,学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:
本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。
分式的运算(加、减、乘、除、乘方和混合运算)是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上,把分式的基本性质做到灵活运用。
再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!
在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,
由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。
这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的`解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。
在本课的教学过程中,我认为应从这样的几个方面入手:
1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。
2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。
3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的'状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。
其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。
最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。
总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。
工作时间:8:00-18:00
电子邮件
675289112@qq.com