一篇优质的心得体会是可以给别人留下深刻的印象的,写好心得体会之后,是可以让自己的思想得到进步的,以下是小编精心为您推荐的统计学课设的心得体会5篇,供大家参考。
经过这一个学期对统计学的学习,深刻地了解到统计学和我们的生活息息相关,我们每一天都会遇到大量的统计问题,无论是走在大街上还是坐在电脑前我们都会接触到大量新闻和大众媒体在统计数字上的表现,如最近炒的很热的加多宝,它的广告语是:全国每卖出十罐凉茶,有七罐是加多宝。我们且不理会这句话的真假,我们单从这句话来看很明显的就是极大地运用了统计数字来表现其产品的销量大。还有我们去菜市场买菜的话,也会粗略地对一个菜的价格进行一个统计,就是会走几个菜摊子,对同一个菜的价格进行询问,然后对这些价格进行比较,最后得到一个比较平均的价格,进而在自己认为比较合理的价格范围进行采购。可见统计学与我们的生活已经是密不可分的了。
在学习统计学的教学过程中,很多例子也是我们生活中常见的例子,比如说学生的身高,体重等等,我们在学习中学习分析这些从生活中得来的数据,并经过统计得出合理的结论。这对于我们学生来说就大大提高了我们学习的兴趣,对于老师老说更是提高了课堂的效率。为了得出结论我们经历了收集数据,整理数据、描述数据和分析数据这些过程,并能利用结论进行合理预测和判断,这就培育了我们用数学的眼光来看待生活,用数学的思维思考生活,可以说这也是一种对于理智的培养,统计学的思维、原则和方法都可以帮助我们自己走出思维误区,更重要的是,还可以让我们识破充斥于广告、网络、媒体报道和专家言论中的误导甚至谎言,尽可能避免被他人忽悠。老师推荐我们看过一本书叫《统计数学会说谎》,这里面就有一个有趣的例子:用平均数来掩盖异常值。一个富翁走入一家坐满了穷人的酒吧,酒吧里人均收入将迅速提升,但每个穷人并没有因此致富。这就是最典型的平均数算法,掩盖了贫富悬殊被拉大到危险地步的事实。除了《统计数学会说谎》这本书里的这个例子,其实我们生活中还有很多这样的例子,如:在报纸上我们经常看到,劳动者平均工资相比过去有了大幅度增长,但却只强调了这个平均工资的增长,却对通货膨胀和加班这些因素只字不提。我们如果在学习中培养了统计学的思维原则和方法,相信我们能看到很多除了数字以外的其他的东西,从而认清事物的本质。
学习统计学,我们不仅要学习统计学中的这种思维,我们还应该掌握统计学中的各种软件的应用,如:excel、spss。因为统计的很多分析都要靠软件来完成,特别是在当今迎来的大数据时代,只有掌握统计学工具,才能做到分析和利用数据。能否应用统计学及时从海量数据中发现潜在需求,是企业能否准确把握创新机遇而赢得竞争的关键。例如我们统计书上209页10。1的这道练习题:一家电器公司的管理人员认为,每个月的销售额是广告费用的函数,并想通过广告费用对销售额做出估计。下面是相关数据:
现在我们来看一下这道题的第(2)问:用月销售额作因变量,电视广告费用和报纸广告费用作自变量,建立估计的回归方程,并说明回归系数的意义。从这道题上我们可以知道,我们用肉眼看表格上的数据,不借助软件进行计算,我们是很难得到方程的回归系数的,更别说说明意义了。这时我们就要借助spss或者excel这些软件对表格上的数据进行分析,而且很快得出结论:
这时我们就可以得出得到这个回归方程:y=83。230+2。290x1+1。301x2。而且我们可以很快说出回归系数的意义:电视广告费用增加1万元,月销售额将增加2。29万元,报纸广告费用增加1万元,月销售额增加1。301万元。这就说明了广告的效果明显比报纸的效果要好得多,从而可以调整广告费用和报纸费用的比例,为企业赢得更高的销售额。这个例子就充分说明了掌握数据分析软件的重要性了:
有效的分析数据是提高工作以及发展效率的关键。
所以学习统计学绝对是让人受益匪浅的,对于我们现在的大学生而言掌握统计学的基本理论和方法,能熟练地运用常用的统计软件分析数据,有助于我们利用手中的数据对负责的问题做出明智合理的决策,对以后我们走出校园,走向社会,或者进入企事业单位和经济管理部门从事统计调查,信息管理,数据分析等工作都是大有益处的。所以,在这里感谢老师这个学期以来对我们在统计学上的教导,以及和我们分享的一些书籍。
在两天的统计学实验学习中,加深了对统计数据知识的理解和掌握,同时也对excel操作软件的应用,
统计学实验心得体会。下面是我这次实验的一些心得和体会。
统计学(statistics)一门收集,整理,显示和分析统计数据的科学,目的是探索数据内在的数量规律性。从定义中不难看出,统计学是一门针对数据而展开探求的科学。在实验中,对数据的筛选和处理就成为了比较重要的内容和要求了。同时对数据的分析也离不开相关软件的支持。因此,eexcel软件的安装与运行则变成了首要任务。
实验过程中,对excel软件的安装因要求具体而变的相对简单。虽然大多数计算机都已内存此软件,但在实验中通过具体的操作亦可以提高自己的计算机操作水平。接下来的重头戏就是对统计数据的输入与分析了。按excel对输入数据的要求将数据正确输入的过程并不轻松,既要细心又要用心。不仅仅是仔细的输入一组数据就可以,还要考虑到整个数据模型的要求,合理而正确的分配和输入数据。因此,输入正确的数据也就成为了整个统计实验的基矗
数据的输入固然重要,但如果没有分析的数据则是一点意义都没有。因此,统计数据的描述与分析也就成了关键的关键。对统计数据的众数,中位数,均值的描述可以让我们对其有一个初步的印象和大体的了解,在此基础上的概率分析,抽样分析,方差分析,回归问题以及时间序列分析等则更具体和深刻的向我们揭示了统计数据的内在规律性。在对数据进行描述和分析的过程中,excel软件的数据处理功能得到了极大的发挥,工具栏中的工具和数据功能对数据的处理是问题解决起来是事半功倍。
通过实验过程的进行,对统计学的有关知识点的复习也与之同步。在将课本知识与实验过程相结合的过程中,实验步骤的操作也变的得心应手。也给了我们一个启发,在实验前应该先将所涉内容梳理一遍,带着问题和知识点去做实验可以让我们的实验过程不在那么枯燥无谓。同时在实验的同步中亦可以反馈自己的知识薄弱环节,实现自己的全面提高。
本次实验是我大学生活中不可或缺的重要经历,其收获和意义可见一斑。首先,我可以将自己所学的知识应用于实践中,理论和实际是不可分的,在实践中我的知识得到了巩固,解决问题的能力也受到了锻炼;其次,本次实验开阔了我的视野,使我对统计在现实中的运作有所了解,也对统计也有了进一步的掌握。
在实验过程中还有些其它方面也让我学到了很多东西,知道统计工作是一项具有创造性的活动,要出一流成果,就必须要有专业的统计人才和认真严肃的工作态度。在实践的校对工作中,知道一丝不苟的真正内涵。
通过本次实验,不仅仅是掌握操作步骤完成实验任务而已,更重要的是在实验中验证自己的所学知识的掌握和运用。统计学的学习就是对数据的学习,而通过实验可以加强我们对统计数据的认知和运用,更好的学习统计学的知识。虽然实验时间很短暂,但对统计知识掌握的要求并没有因时间的短暂而减少,相反我们更得努力掌握和运用统计学的新知识,提高自己的数据分析和处理能力,促进统计学的新发展。以上就是我这次实验的一些心得体会,希望可以对自己有所帮助。
统计,从我的理解来看,就是为了探究某件事情,查询某种关系而去进行的数据收集,数据处理和数据分析。不同于以往的数学类课程,统计并不执着于数据的因果关系,更侧重于数据之间的相关关系,最近在读维克托的《大数据时代》,作者也在强调大数据时代是相关关系的时代。所以在这个信息爆炸的年代,统计在大数据中占有很重要的地位,尤其是在计算机的辅助下,我们可以对大样本甚至全体样本进行分析和处理,这就需要我们理解统计,可能不知道原理,但一定要知道在什么地方去运用何种方法。
先抛开以上观念不谈,这学期统计课最喜欢的还是老师在讲课的时候能够时刻把知识连贯起来,从来没有零零散散的讲过某个知识点。为什么会有中位数?它是用来干什么的?中位数和平均数的缺陷是什么?为什么会出现四分位点和箱图?为什么会这么做是我在课上感受最深也是受益最多的地方。
如今学完统计,我自认为能够很清楚的为了某项目的去做调查问卷,基于数据做出合理的处理和分析,然后多样化的表达出来,从而验证我的目的。因为我知道该在什么条件下去做什么分析,有什么缺陷需要做什么去补全。所以,感谢老师给了我一个完整的统计体系,即使以后觉得知识不够用时,我仍能够在当前体系继续完善它。
另外,我养成了看课件,看书先看目录和重点的习惯,以前在这方面做得不是很到位,总是觉得自己足够聪明,什么东西都是直接拿来看,看到好的便觉得不错,也不管整个体系是什么样子的。如今深刻觉得先把知识体系建好的好处,站在全局的角度看问题非常全面,好像在飞机上观察一个城市一般。这也是以前上课所欠缺的,我感觉以前的课程老师也很少注重这方面,总是说今天讲什么,没有前文,也没有后果。
以上两点我觉得比我收获整个统计体系的知识更重要,这是对我学习方法的进一步完善。之后将总结一下我在统计课上学到的知识。
首先是收集数据:其主要的方法就是调查问卷和从网上的数据库中去获得。这两种方式在前两次大作业中我们都尝试过了。现在网络很发达,调查问卷也可以直接发放到网上,也可以很方便的做分层和整群抽样调查。当时做调查问卷感悟最大的是怎样去让问题更有吸引力,我们对有个小组由于做了关于我是歌手这个非常火的题目,所以收到300多份问卷,而我们做的是有关考研班的调查问卷,所以收到的问卷才40多份。当数据收集到之后,一般来讲是做描述性统计,这是一种简单而又直白的,但却富
有表现力的展现方式。可以直接观察到各组之间的优劣和占总体的大小。当时我们组做得大作业是有关全世界各国gdp的。条形图能够反应各国之间的差异,我们很明显能够看到美国的gdp大概是中国的两倍。而通过饼图,最直观的感受是美国gdp占全世界的四分之一,这是个体与总体的比较。
频率表
定性分析条形图
饼图
描述性统计直方图
频率表
定量分析
ogive
数值特征位置特征离散特征
形态特征
描述性统计下分为定性和定量,所用方法不是很一致,在定量的学习中,我们依次理解了平均数,中位数,四分位数,箱图,方差,标准差,变异系数,偏倚程度。这是一个渐进的过程,平均数对于偏态比较敏感,易受极值的影响,所以我们引用了中位数,相对而言受极值的影响较小。
而平均数和中位数都是一个确切的点,不能表示范围,所以我们有了四分位数,进而再表示为图形就是箱图。但是以上只能表现数据的位置特征,有些时候我们更关系数据的波动和密集程度,比如打靶的成绩。所以就有了方差和标准差,都是表示数据对于平均数的波动程度。对于身高和体重来讲,由于平均数的不同,所以对于不同数据,比如身高和体重,由于基数不一样,方差不一定越大越好,于是又有了变异系数,这样不用的数据也可以比较波动程度。通过位置特征和离散特征,我们就能够将数据的形态特征表现出来。
描述性统计是对单个变量内部特征的处理,从而得到关于单个变量的特性。描述性统计是剩下部分的基础,也就是假设检验和方差分析,或者说研究多变量的基础。
研究多个变量,首先,也是最重要的是验证变量是否符合正态分布。正态和非正态,意味着之后选取的方法将截然不同。正态将会以平均数作为核心,比如anova,lsd等,
非正态则会以秩或者中位数作为核心,主要以sign检验,秩和检验,平均秩检验等非参检验。
方差分析也是一个渐进的的过程。anova是只研究在一个因子下多方案的差异性,lsd就可以研究多个方案两两之间的差异性。之后就是在多个因子下,block是研究多个无相互作用因子下方案的差异性,factorialexperiment则是能够再在有相互作用下的因子下研究一个因子对于多个方案的差异性。
非参检验也是从最简单的中位数开始,从单变量开始拓展。秩和检验解决了多个方
案,并不配对的问题,比符号秩更具有普适性,但是精确度不如符号秩。k-w则是通过比较各样本和总体平均秩来判定多个方案是否存在差异性。
剩下的就只有相关性分析了,正态的时候用persion,非正态则用spearman,两者之间原理是一样的,只不过一个是用平均值,另一个使用中位数。我们在做军事建模的时候就选用了spearman。
统计学学习心得体会(2)
花几天时间,整体复习了一遍统计学,准确的来说是从第一页开始较为仔细的阅读了一遍《统计学》这本教科书。随后统计为我打开了另一扇窗,让我得以从不同的视角重新思考这门让我痛苦了一个学期的课程。至此统计学不再仅仅是一些无数抽象公式的代名词,而是一门理论联系实际,工作活动中不可或缺的一门重要科学。
《总论》和《统计数据》的内容比较简单,引出概念,复习以往学习过的知识。就在我们放松警惕,大呼统计学一点也不难的时候,《抽样估计》彻底震住了自鸣得意的我们。
理论上来说《假设检验与方差分析》的内容要难于《抽样估计》。但是个人觉得《抽样估计》的行文并不像《假设检验》那么好理解。《统计学》这本书喜欢先向学生介绍很多概念和公式,再将公式引用到例子中来解决问题。然而在介绍公式的同时,学生往往不了解这些公式真正的意义和使用方法,单纯的死记硬背效率颇低。拿《抽样估计》来说,计算抽样平均误差的公式之多,方法之众,让同学们的脑袋混沌了好久。大家私下交流,混沌的原因在于不知道这些公式的来龙去脉,只将条件带入相应的公式计算答案的方法是以前没有经历过的,需要一段时间的适应过程。
《假设检验与方差分析》开篇给同学举了两个例子来阐明假设检验的基本思想。个人认为,这两个例子是点睛之笔。在学习的开头就让学生了解到第五章的基本内容,以及假设检验在实际应用中的意义。就像写小说先抛出一个悬念吸引读者读下去。阅读两个例子后我会不禁思考,如果实际中遇到类似的问题,有什么方法可以避免犯“弃真”或者“采伪”的错误。带着疑问去学习,才是真正的自主学习的过程。
《相关与回归分析》同样吸引人。因为之前我片面的认为相关关系没有确切的规律可循,更不容说计算出事物的内在联系了。然而科学证明,不但相关系数可以计算出来,回归方程也可以用来做分析预测。我想起了一句话:任何学科脱离了统计都将不是科学。只有统计能仅凭现象就能分析归纳出事务的内在联系,给我们呈现出一个更明朗的世界。
《时间序列分析》在我看来是和我的专业---国贸联系最紧密的学科。运用所学到的知识可以分析出公司销售额的各种增长情况,公司的销售额有什么样的季节变化规律,还能建立一个模型对未来的财务情况做出预测。
《统计指数与综合评价》中“综合法指数”的计算用到了《微积分》的相应知识。在《微积分》中不知所云的内容却可以通过统计学的学习恍然谈大悟。多亏了老师深入浅出的讲解,让我在短短一个学期里既巩固了旧知识又学到了许多有用的新知识。
花几天时间,整体复习了一遍统计学,准确的来说是从第一页开始较为仔细的阅读了一遍《统计学》这本教科书。随后统计为我打开了另一扇窗,让我得以从不同的视角重新思考这门让我痛苦了一个学期的课程。至此统计学不再仅仅是一些无数抽象公式的代名词,而是一门理论联系实际,工作活动中不可或缺的一门重要科学。
《总论》和《统计数据》的内容比较简单,引出概念,复习以往学习过的知识。就在我们放松警惕,大呼统计学一点也不难的时候,《抽样估计》彻底震住了自鸣得意的我们。
理论上来说《假设检验与方差分析》的内容要难于《抽样估计》。但是个人觉得《抽样估计》的行文并不像《假设检验》那么好理解。《统计学》这本书喜欢先向学生介绍很多概念和公式,再将公式引用到例子中来解决问题。然而在介绍公式的同时,学生往往不了解这些公式真正的意义和使用方法,单纯的死记硬背效率颇低。拿《抽样估计》来说,计算抽样平均误差的公式之多,方法之众,让同学们的脑袋混沌了好久。大家私下交流,混沌的原因在于不知道这些公式的来龙去脉,只将条件带入相应的公式计算答案的方法是以前没有经历过的,需要一段时间的适应过程。
《假设检验与方差分析》开篇给同学举了两个例子来阐明假设检验的基本思想。个人认为,这两个例子是点睛之笔。在学习的开头就让学生了解到第五章的基本内容,以及假设检验在实际应用中的意义。就像写小说先抛出一个悬念吸引读者读下去。阅读两个例子后我会不禁思考,如果实际中遇到类似的问题,有什么方法可以避免犯“弃真”或者“采伪”的错误。带着疑问去学习,才是真正的自主学习的过程。
《相关与回归分析》同样吸引人。因为之前我片面的认为相关关系没有确切的规律可循,更不容说计算出事物的内在联系了。然而科学证明,不但相关系数可以计算出来,回归方程也可以用来做分析预测。我想起了一句话:任何学科脱离了统计都将不是科学。只有统计能仅凭现象就能分析归纳出事务的内在联系,给我们呈现出一个更明朗的世界。
《时间序列分析》在我看来是和我的专业——国贸联系最紧密的学科。运用所学到的知识可以分析出公司销售额的各种增长情况,公司的销售额有什么样的季节变化规律,还能建立一个模型对未来的财务情况做出预测。
《统计指数与综合评价》中“综合法指数”的计算用到了《微积分》的相应知识。在《微积分》中不知所云的内容却可以通过统计学的学习恍然谈大悟。多亏了老师深入浅出的讲解,让我在短短一个学期里既巩固了旧知识又学到了许多有用的新知识。
统计学是我们班这个学期开设的课程,虽然只有短短一个学期的课程,但是通过这一学期的学习,我们对统计学应用领域及其内性和基本概念有了一个基本的了解,可以说,这一学期我的收获颇丰。
就统计学这门课程来说,了解到统计学是一门研究如何根据事物的随机性规律来收集、分析、处理数据并利用其进行推断的科学,只要有数据的地方,就会用到统计学;是研究如何用科学的方法收集、整理、分析实际数据,并通过统计所特有的统计指标和指标体系,表明所研究的规模、水平、速度、比例和效益,以反映其现象发展规律在一定时间、地点、条件的作用下,描述其现象数量之间的关系和变动规律。
其实这门学科有两大难点:统计有许多相似的概念,要求理解内涵,辨别异同和实际应用。对于公示不能像数学那样,只从抽象的式子到式子的变换,而是理解公示整体和每个符号的统计含义,掌握公式的使用条件,体会应用的灵活性。通过老师上课授教和课后不断的学习,对这两大难点已经克服。结合到平时的工作学习,我能比较快的理解并能掌握统计学的一些知识。
我们学习统计学的目的是运用统计思想进行分析,在实践工作中,要善于利用统计的思维方式思考,在纷繁复杂的社会实践中,要学会发现数字、分析数字、并使用数字说话;掌握基本的统计方法,要掌握统计工作中涉及到基本统计概念和基本统计计算方法,能够阅读常规的统计报告,了解统计指标的含义,同时,能够自己处理常见的统计问题,锻炼统计的计算能力。
以上就是我的学习体会,我要树立终身学习的理念,不断学习,不断充实,积极探索,逐步成熟。在日常的生活学习中,要学会自己运用统计学知识处理各种问题,为生活提供便利。
工作时间:8:00-18:00
电子邮件
675289112@qq.com