心得体会是要围绕基本观点摆事实、讲道理,大家可以很好的将自己的感情抒发出来,通过不断反思得到的启发,都应该好好的记录在心得中,小编今天就为您带来了建模师的心得体会8篇,相信一定会对你有所帮助。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识……数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术.
在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革.
这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。
数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高学习数学建模也有一段时间了,说实话在还没学数学建模时,我以为这门课程是跟几何图形相关的,但在学了之后才发现完全理解错了,通过这段时间的学习使得我对数学建模有了一个全新的认识,数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。
以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。
通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的.在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的从问题的本质出发的一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。
数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。
在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的单独思考,并且要有一定的分析问题的能力。
我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。
数学建模论文也有固定的结构,其中包括摘要、问题重述与分析、问题假设、符号说明、模型建立与求解、模型检验、结果分析、模型的进一步讨论、模型优缺点等一系列的步骤。与此同时数学建摸论文的模块设计也有固定的格式,问题的背景、问题的重述、基本假设与符号说明、问题的分析与模型的准备、模型的建立、模型的求解、模型的检验、模型的灵敏度与稳定性分析、模型的科学性及现实意义、模型的使用说明、模型的进一步讨论与改进、模型评价与推广、写给__的意见、参考文献、附录等。紧接着老师又给我们讲述了数学建模论文的一系列写作技巧,让我获益匪浅。
数学建模中常用算法有很多种,1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合\参数估计\插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)3、线性规划\整数规划\多元规划\二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划\回溯搜索\分治算法\分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)
但是数学建模到底是什么样子的,举几个例子:例子一:三个学生住旅馆,服务员收费30元,于是三个学生每人交了10元。后来老板对服务员说当天特价,只用收25元,要服务员把多的5元退给三人。爱贪小便宜的服务员想:“5元给三个人也不好分,自己留下2元,给他们一人一元正好。”于是,服务员退还了学生3元并私吞了2元。现在的结果是:每个学生只出了9元,一共27元,加上服务员的2元,才29元。剩下的1元钱哪里去了?我们先从最易理解的角度考虑,三位顾客付了30英镑,其中25英镑是餐费,3英镑是找头,2英镑是小费。于是„„这个等式完全成立,并且不存在丢失钱的问题。但这种分析却不能打消困惑者的疑惑。27-2=25.这是个有意义的加法公式,27+2=29,纯属不三不四的胡扯,用来混淆视听,迷惑人。只是由于结果及其接近30,从而使人相信这两个数字是有着紧密连续的,实际上这个式子没有任何意义。
首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。
新一轮的基础教育课程改革经过近几年的实施与推进,新课程的理念已逐步被广大教师接受和认同,在教学实践的不同层面都得到了不同程度的体现与落实。作为课程改革的主阵地和落脚点——课堂教学,却还有或多或少的不尽如人意的地方。所以我们的课堂教学有必要依据新课程理念,建立符合实际的教学模式。反思我们的现在推行的解决问题课堂教学模式,不难发现与新课程改革的要求基本一致,有着诸多优点,主要表现在以下几个方面:
大量的研究表明,和谐的课堂学习环境可以有效的激发学生的学习兴趣,提高学习效率。在和谐的课堂学习环境中,学生的精神状态自然就会调整到最佳,并能随教师一起很快的进入到学习中来,从而实现课堂的高效。本次建模研讨中的两节均能从学生的生活经验出发,来灵活创设学习情境,激发学生的学习动力,实现了和谐课堂的创建,为下面数学活动的展开做好铺垫。
二、创设学习情境,激发学生参与数学学习的内在动力。
通过本次研讨活动,我深深的感受到:把学生的数学学习活动置身于一定的学习情境之中,把知识的学习寓于情境之中,能最大限度的提高学生的参与度,提高学生的学习效率。在我们推行的这一模式的实施中,能明显的看出教师作为学生学习的组织者、合作者、引领者的教师,能为学生创设一个放飞心灵、获取知识的园地,能在我们的课堂中把学生知识的获取、能力的发展、情感的体验、个性的张扬尽可能的融合到一起,尽可能的激发学生的学习积极性,激发学生学习的兴趣,充分发挥着学生在学习中的主体作用。例如:李艳秋老师执教的《相遇问题》一课中,教师提供的饿“送文件”这一学习情境,学生的就在这一情境中展开数学学习活动,在经历自主探究、合作交流、质疑建构中体验数学学习活动的乐趣,在体验探索中自主获取知识,积累数学活动的经验。
新课程改革倡导我们的数学课堂应该是面向全体学生,强调学生自觉参与的过程,反对以往教师在课堂中的“权威地位”。在这两节研讨课中教师尽可能为学生创设具有接纳性、宽容性的开放课堂,创设具有开放性的学习情境、问题引领等,来促使学生全身心的投入到学习中,让学生真正的做到动眼、动手、动口,实现课堂效率的有效、高效。例如:周宏娟老师执教的《百分数应用三》,让学生拿出课前调查的一个家庭支出情况的相关信息,让学生独立提出问题,自主尝试解决,在这样开放的学习环境中学生是可此不彼,积极参与,课堂的效果亦是很高!
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数
学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
总之,数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。中学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导中学数学教学显得愈发重要。
这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。
在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还
是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方
法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
学校财务工作,直接关系到学校的稳定与展,关系到全体教职工工作积极性的发挥。20__年度,学校财务人员团结努力,实行 量入为出、保证重点、兼顾一般的原则,使其工作取得了一定的成绩。现总结如下:
一、加强领导,完善制度,保障财务工作有序运转。学校切实加强对财务工作的领导,成立了财务工作领导小组,由校长任组长,后勤副校长任副组长。财务工作坚持做到
一日一清,一月一结 ,及时监控资金流动情况,做到心中有账本,心中有预算。财务工作账实相符,账账相符。学年初,学校即时召开行政会议,专题研究和讨论学校财务工作。继续坚持实行
一支笔 审批制度,特别是对货物采购实行严格规范的管理制度,有效地从源头和制度上筑起了一道防止资金不良流动的堤坝。
二、强化管理,注重挖潜,提高有限资金使用效益。为切实提高有限资金的使用效益,学校从内部做起,注重内部挖潜,降低内耗。学校落实责任,规范管理,对学校办公用品,水暖器材、维修材料实行统一采购,进入学校校产保管室专账,防止了铺张浪费,防止了重复投入,防止闲置呆账。
三、突出重点,加大投入,促进各项工作正常开展。提高资金使用效率,就是要将有限资金用得合理,用得实在,用在该用之处。本年度,学校坚持保证重点的原则,着力保障教师工资和待遇及时足额到位及教育教学一线的需要。学校通过切实加强管理,保证了教师课时工资和应有待遇的落实,确保了学校大局的稳定,充分调动了全校教职工的积极性和主动性。与此同时,离退休教师的医药费和政策性福利同样也已做到按时到位。教育教学工作是学校的核心工作。学校财务应当也应该服务于这一核心工作。学校切实加大了对教育教学工作的投入。如为提高干部队伍素质和促进教师业务水平的提高,学校积极支持领导、教师外出进修或培训。
四、着眼长远,内抓外引,积极做好消赤减债工作。在收入不断减少的情况下,学校着眼长远,内抓外引,积极做好了消赤减债工作。学校行政集体研究,制定了消赤减债预算目标,并采取过硬措施,确保预算目标的按期完成。
五、即将过去的一年,尽管学校财务工作在困难的情况下取得了不错的成绩,促进了学校的改革、稳定和发展,但是问题也不容回避和忽视:1.学校仍处在负债运行状态,资金周转困难。2.学校硬件、软件建设上台阶,所需费用缺口较大。
六、面对新的一年,学校财务工作任务重、压力大。为此,需要从以下几个方面入手,切实加强财务工作,确保学校正常运行。1.、继续坚持 量入为出、保证重点、兼顾一般的原则,切实提高资金使用效益。2、.继续加强财务管理,注重内部挖潜降耗,通过完善制度、严格把关等措施和方法,做好增收节支工作。3、.继续全力做好消赤减债,确保局下达的任务目标如期完成。
到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为,随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。
具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。
现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。
这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。
在课本第二章的时候我们开始接触实际问题,在第二章片头我们看到的就是某城市供水量的预测问题,在这一章里,老师通过城市供水量的预测问题介绍了求函数近似表达式的插值法和拟合法、城市供水量预测的简单方法、供水量增长率估与数值微分,其中插值法主要介绍lagrange法、newton法、分段低次插值和三次样条插值。至此我们才真正体会了数学建模对实际生产的帮助。
但同时,我们也发现,要学好数学建模这一门学科,或者说应用数学建模的知识去解决其他问题,不仅仅只要求我们有扎实的数学知识,还需要我们学习更多的数学分支学科,例如有时候我们还需要其他的数学软件来帮我们解决问题,同时还要考察实际情况学会从实际问题中提炼数学问题。
总的来说,学习数学建模这一门学科对我们的帮助很大,因为它不仅增强了我的知识面,我们可以在学习这一门学科的过程中锻炼我们学习积极性,逐步培养很强的自学能力和分析、解决问题的能力,这对于我们师范生以后走上教育工作岗位也是很有帮助的。
财务管理实训结束了,作为财务管理专业的学生,财务管理课程可以说是重中之重,通过这次实训把我以前注意到的没注意到的知识又重新串联起来温习了一遍。我想这对我以后的找工作面试、考试等都有很大裨益的。这次实训虽然只是在校内自主实习,但是依然让我学到了许多知识,得到了很多经验,并在实际操作过程中找到了自身存在的不足,对今后的财务管理学习有了更明确的方向和目标,增进了我们对企业实践运作情况的认识,为我们毕业走上工作岗位奠定坚实的基础。
财务管理是一门应用性极强的学科。通过本次校内实训,让我们理论联系实际,不但熟悉了财务管理中所涉及的知识和问题,还让我们掌握了如何运用现代计算机辅助工具对遇到的问题进行分析计算,为实际工作打下良好基础。在取得实效的同时,我也在实习过程中发现了自身的一些不足。总结了以下几点:虽然我们只是参加了短短的实习,但在这实习中学到了很多在课堂上根本就学不到的知识,受益匪浅。做财务管理工作,如果仅仅是学书本上的知识是远远不够的,工作的经验是及其重要的。实际工作过程中的各种问题不是书本就可以解答的,它需要灵活的应用能力,把所学知识应用到实践当中去。可以说没有实践的学习是非常狭隘的,也是不利于财务管理工作的。其次,作为一名未来人员要有严谨的工作态度。财务管理工作是一门很精准的工作,要求准确的核算每一项指标,牢记每一条税法,正确使用每一个公式。再有,要有吃苦耐劳的精神和平和的心态,用积极的心态处理日常遇到的难题人际交往方面。
实训是大学生将理论运用到实际的重要经历,通过实训,不仅培养了我的实际动手能力,也增加了我的实际操作经验,对实际的财务工作也有了新的认识。实训让我学到了很多在平时课堂上学不到的知识, 也让我更加看清自己的不足之处。通过这次财务管理实训,使我增强了我的动手能力,我们对今后的学习、发展方向有了更进一步的认识:学习不仅仅学的是理论知识,更重要的是学习如何将理论知识应用于实践,学习将工作做到尽善尽美。
最后感谢学校给我们这次实习的机会。
此次实务实习目的主要是为了通过写会计分录、填制各种凭证到记账、报表等一系列实务实训,提高我们的实际应用水平,使得我们能够真正系统地练习财务会计核算的基本程序和具体方法,进而加强对我们以前所学专业理论知识的理解,提高我们实际操作的动手能力,提高运用会计基本技能的水平。在本次实习过程中,我们坚持都动手的原则,系统掌握填制和审核原始凭证与记账凭证、登记账薄以及编制报表的会计工作技能和方法。而且对所学理论有一个较系统、完整的认识,通过此次实习,我们将会计理论与会计实践相结合,收获颇多。
一、扎实的理论知识是前提。在实习以前,我们总以为通过三年的学习,自身所学的会计理论知识已经扎实,只要掌握了规律就没什么问题。但是在实习过程中我们才发现,我们平时所学的远远不够,在细节方面更是错误百出。此外,我们根据相关的实习数据资料,在填写原始凭证、记账、编制各种帐表时屡屡受阻,回想原因,大多都因为平时理论知识掌握不扎实,经不住实战的考验,这也是我们在本次实习过程中得到的一个重要教训。
二、理论联系实践是关键。通过此次的实习过程我们还发现,仅仅有熟练的理论知识对于我们来说是远远不够的,作为学习了这么长时间的我们,可以说对有关会计的专业基础知识、基本理论、基本方法和结构体系,我们都基本掌握。但是在这次实习过程中仍然很吃力,这是我们认识到会计理论如果离开实践过程皆为零,实际操作性和实践性对于会计人员来说至关重要,离开实践环节理论只是纸上谈兵。
三、足够的耐心、细心是保障。会计工作本来就是烦琐的工作,在这次实习的过程中我们深刻体会到了这一点。在开始的实习过程中,整天要对着那枯燥无味的账目和数字而心生烦闷、厌倦,以致于简单的填写凭证、记账都会试算不平。出错越多,越是心浮气躁,出错就越多,形成恶性循环。到后来,我们认识到了这一不足之处之后,谨慎填写,不但速度加快了,效率也提高了,起到了事半功倍的效果。因此,在财会工作中切忌粗心大意,马虎了事,心浮气躁。其实做任何事都一样,都需要有一颗平常心。
通过这次实习,增强了我的实践能力。对自己行事的态度也有所改善。仅仅的一个月在校实习,我将受益终生!
工作时间:8:00-18:00
电子邮件
675289112@qq.com